Ch 8.2 - 8.4 worksheet

Solve the problem. Assume that a test will be conducted of the claim that two samples come from populations with the same mean. Assume that the samples are independent and have been randomly selected.

Samples are taken from two populations, A and B, with the following results.

	A	В
Sample size	100	200
Sample mean	25	23
Sample variance	1.21	1.01

You wish to test the following hypothesis at the 1 percent level of significance:

H₀: $\mu_1 = \mu_2$ against H₁: $\mu_1 * \mu_2$.

What decision rule would you use?

- Reject Ha if test statistic > 2.575
- Reject Ho if test statistic < -2.575.
- Reject H₀ if test statistic < 2.575 and > -2.575.
- Reject Ho if test statistic < -2.575 or > 2.575.
- Construct the indicated confidence interval for the difference between the two population means. Assume that the two samples are Independent and that they have been randomly selected.

When 59 American and 47 European golf pros played a round of golf, the following information was gathered. Find a 90% confidence interval for μ A - μ E.

	Sample mean	Sample standard deviation		
American	A	С		
European	В	D		

- (5.67, 7.91)
- © (5.85, 7.73)
- O (5.88, 7.70)
- (-7.73, -5.85)
- Find the test statistic to test the claim that $\mu_1=\mu_2$. Two samples are randomly selected from each population. The sample statistics are given below. Use $\alpha = .05$.

$$\begin{array}{ll} \underline{\text{group } \#1} & \underline{\text{group } \#2} \\ \underline{n=35} & \underline{n=42} \\ x=24.32 & \underline{x=26.87} \\ s=2.9 & s=2.8 \end{array}$$

- a) -3.90
- b) -3.16
- c) -2.63
- d) -1.66

The two data sets are dependent. Find d to the nearest tenth.		
X 229 197 220 182 266 299 302		
X 229 197 220 182 266 299 302 Y 176 133 195 153 240 268 284		
0.000		
© 35.2		
© 211.2		
O 45.8		
© 21.1		
Notice of the second se		
5. Find s _d .		
The differences between two sets of dependent data are 0.22 0.4 0.32 0.32 0.3. Round	to the nearest hundredt	h.
© 0.18		
○ 0.03		
○ 0.09		
○ 0.06		
The following table shows the weights of nine subjects before and after following a particular diet for two months. You wish to test the claim that the diet is effective in helping people lose weight. What is the value of the appropriate test statistic? Subject A B C D E F G H I Before 168 180 157 132 202 124 190 210 171 After 162 178 145 125 171 126 180 195 163	*	
© 0.351		*
○ 1.052		
9.468		
◎ 3.156		
Determine the decision criterion for rejecting the null hypothesis in the given hypothesis test; i.e., de	scribe the values of the test	statistic that would result in
7. rejection of the null hypothesis.	×	2
We wish to compare the means of two populations using paired observations. Suppose that $\overline{d}=3.125$, $s_{\overline{d}}=2.911$, and $n=8$, and that you wish to test the following hypothesis at the 5 percent level of significance:	2	-
H_0 : $\mu_d \leq 0$ against H_1 : $\mu_d > 0$.		
What decision rule would you use?		
© Reject H _o if test statistic is greater than -1.895.		
© Reject H _o if test statistic is greater than -1.895 and less than 1.895.		
© Reject H _n if test statistic is greater than 1.895.		
© Reject H _o if test statistic is less than 1.895.		
•		

8.	Construct a confidence inte distributed.	erval for µ _d , the	mean of the differences	d for the	population of paired da	ta. Assume that t	he population of	paired differences is normall
	A test of writing ability is given completed a formal writing co- confidence interval for the me- Before 70 80 92 99 93 97	urse. The results an difference bet	are given below. Construct ween the before and after s	t a 99%	ру			
	After 69 79 90 96 91 95							
	© 1.2 < μ _c < 2.8							
	\bigcirc -0.1 < μ_d < 4.1							
	\bigcirc -0.5 < μ_{d} < 4.5							
	\bigcirc -0.2 < μ_{d} < 4.2							
0	Find the number of suc	ccesses x sug	gested by the given st	tatement				
9.	A computer manufacture	r randomly sele	ects 2690 of its compute	ers for qu	ality assurance and find	s that 2.6% of th	ese computers	are found to be defective.
	© 75							
	73							
	70							
	○ 68							
10	Use a 0.01 significan who plan to vote in the women who plan to vote.	ce level to te e next electio ote. Results	st the claim that the on is the same as the					
	Plan to vote Do not plan to vote	170	185 115					
	© 0.391							
	○ 0.586							
,	0.592	¥					,	*
	0.195							
		*				*		*
11.	Find the test	tstatisti	ic to estima	te z,	to test the c	laim p ₁	$-p_2 \le 0$. Use α = .01.
			group #1		group #2			
			n = 100		n = 140			
	E		x = 38		x = 50	-		
	a) 2.1	16	b) .362		c) 1.324	d)	.638	

Given the hypothesis and the sample data, find the decision criterion that would be used for rejecting the null hypothesis. Assume that the samples are independent and that they have been randomly selected. Assume that $np \ge 5$ and $nq \ge 5$ for both samples.

The table shows the number of people having a certain characteristic in samples from two different populations.

Sample	1	2
Sample size	80	100
Number with		
characteristic	40	53.

We wish to test the hypothesis at the 10 percent level of significance: H_0 : $p_1 \ge p_2$ against H_1 : $p_1 < p_2$.

What decision rule would you use?

- Reject Ho if test statistic is greater than -1.28.
- Reject H_o if test statistic is less than 1.28.
- Reject Ho if test statistic is less than -1.28.
- None of the above is correct.
- Find the appropriate p-value to test the null hypothesis, H_0 : $p_1 = p_2$, using a significance level of 0.05.

- 0.4211
- 0.0021
- 0.0512
- 0.0086
- 14. Construct the indicated confidence interval for the difference between population proportions p₁ · p₂. Assume that the samples are independent and that they have been randomly selected.

In a random sample of 300 women, 50% favored stricter gun control legislation. In a random sample of 200 men, 25% favored stricter gun control legislation. Construct a 98% confidence interval for the difference between the population proportions $p_1 - p_2$.

- 0.152 < p₁ p₂ < 0.348
- 0.168 < p₁ p₂ < 0.332
- $0.141 < p_1 p_2 < 0.359$
- $0.164 < p_1 p_2 < 0.336$