<u>Ch 4.2</u> *Mean* and *Standard Deviation* for probability distribution tables

Mean or *expected value* (mu): $\mu = \Sigma(x \cdot p(x))$

Ex 1a) Find the Mean for the following table that represents the number of boys a couple could have, if they have 3 children.

Apr 15-3:08 PM

Ex 2b) Find the mean number of heads you get when flipping a coin 4 times.

x = # heads	p(x)
0	1/16
1	4/16
2	6/16
3	4/16
4	1/16

Apr 15-3:16 PM

Try #1. Find the mean number of questions you'd get correct for 5 T/F questions?

Ex3) Range Rule of Thumb: Maximum value: $\mu + 2\sigma$

Minimum value: $\mu - 2\sigma$

Ex3a) In 14 births the $\mu = 6.993$ and $\sigma = 1.2$, what would the min and max # of girls be?

Ex3b) Would it be unusual for there to be only 1 girl in the birth of 14?

P(x or more events)

Apr 15-3:27 PM

variance (row): $\sigma^2 = \Sigma[x^2 \cdot p(x)] - \mu^2$

Standard deviation (row): $\sigma = \sqrt{\Sigma[x^2 \cdot p(x)] - \mu^2}$ Ex2)

Lets go back to example 1a and 1b and find what the standard deviations are.

Apr 15-3:20 PM

When betting on events, there is an average or *expected value* that you can make when playing the game or on the event.

Ex4a) Your class is selling 500 tickets for a \$1/each and the winner wins \$250. What is the expected value if you play?

outcomes	<u>X</u>	$\underline{P}(x)$
win	\$249	1/500
lose	-\$1	499/500

Apr 15-3:33 PM

Ex4b) Gary pays \$500 for the year for a million dollar life insurance policy. The probability of Gary dying for a 40 year old man is .005. What is the expected value for Gary?

<u>outcomes</u>	<u>X</u>	p(x)
live	-\$500	.995
die	\$999,500	.005

Ex4c) You are playing Roulette at the casino. You place a \$5 bet on 13. If you win, you get \$175. There are a total of 38 numbers. What is the expected value of winning.

<u>outcomes</u>	<u>X</u>	<u>p(x)</u>
win	\$170	1/38
lose	-\$5	37/38

Apr 15-5:36 PM Apr 15-5:44 PM