

Feb 4-3:03 PM

Feb 4-3:16 PM

In exponential functions $y = a \cdot b^x$ What represents a?
What represents b?
What represents x?

Try: Suppose 2 mice live in a barn. If the number of mice quadruples every 3 months, how many mice will be in the barn after 2 years?

What is the exponential function?
How many mice are there after 2 years?

Try: A bacteria culture doubles in every 8 hours. The culture starts with 150 cells. How many will ther ebe after 24 hrs? After 72 hours?

What is the exponential function?
How many after 8 hrs?
How many after 72 hours?

Feb 4-3:22 PM

1 EXAMPLE Evaluating an Exponential Function

Evaluate each exponential function. (use your calculator)

a. $y = 5^x$ for x = 2, 3, 4

X	5 ^x	у
2	$5^2 = 25$	25
3	$5^3 = 125$	125
4	$5^4 = 625$	625

b. $t(n) = 4 \cdot 3^n$ for the domain $\{-3, 6\}$

n	4 · 3 ⁿ	t(n)
-3	$4 \cdot 3^{-3} = 4 \cdot \frac{1}{27} = \frac{4}{27}$	$\frac{4}{27}$
6	$4 \cdot 3^6 = 4 \cdot 729 = 2916$	2916

Feb 4-3:12 PM

Real World Problems: $y = a \cdot b^x$

Ex2a) Suppose 10 animals are taken to an island, and then the population of these animals quadruples every year. Use the function $f(x) = 10 \cdot 4^x$. How many animals would there be after 6 years.

looking at the formula what is a, b, and x?

Suppose 20 rabbits are taken to an island. The rabbit population then triples every half year. The function $f(x) = 20 \cdot 3^x$, where x is the number of half-year periods, models this situation. How many rabbits would there be after 2 years?

 $f(x) = 20 \cdot 3^x$ looking at the formula what is a, b, and x? = $20 \cdot 3^4$ In 2 years, there are 4 half years. Evaluate the function for x = 4. = $20 \cdot 81$ Simplify powers. = 1620 Simplify. After two years, there would be 1620 rabbits.

Feb 4-3:17 PM

Feb 4-3:25 PM

Feb 4-3:33 PM

Feb 4-3:27 PM

$y = 3^x$	x y -2 -1 0 1 2	$y = 6^{x} \frac{x \mid y}{-2}$ $-1 0$ 1 2	$ \begin{array}{c cccc} y - \frac{1}{3} & .3^{x} \\ \hline & x & y \\ & -2 & & \\ & -1 & & \\ & 0 & & \\ & 1 & & \\ & 2 & & \\ \end{array} $
-3 -1	3 3 1 1 1 3 x 3 x 3 3 y	-3 -1 1 3 x	-3 -1 1 3 x

Feb 5-8:47 AM