Translating Graphs of Absolute Value Equations

A V-shaped graph that points upward or downward is the graph of an absolute value equation.

х	y = x	y
-3		
-2		
-1		
0		
1		
2		
3		

Below are the graphs of y = |x| and y = |x| + 2. Describe how the graphs are the same and how they are different.

Ex1a) 🔪

Graph
$$y = |x| - 1$$
.

Describe how each graph below is like y = |x| and how it is different.

a.

b.

What would happen to these graphs?

The equation is y = |x| - 8.

The equation is y = |x| + 6.

Ex1b) How are these different than the last several examples?

a.
$$y = |x + 2|$$

)

b.
$$y = |x - 2|$$

$$y = |x - 3|$$
 and $y = |x + 3|$.

What would happen to these graphs?

a.
$$y = |x - 4|$$

b.
$$y = |x + 1|$$

Ex1c) How does these graphs different and what changes?

$$y = -|x|$$

$$y = 3|x|$$

X	<u>y</u>
-3 -2 -1 0 1 2	9 6 3 0 3 6
3	6 9

$$y = -4|x|$$

TRY

EXAMINING THE EFFECT OF a Match the function with its graph.

1
$$f(x) = 3|x|$$

$$2 \cdot f(x) = -3|x|$$

3.
$$f(x) = \frac{1}{3}|x|$$

EXAMINING THE EFFECTS OF h AND k Match the function with its graph.

4.
$$y = |x - 2|$$

$$5. y = |x| - 2$$

6.
$$y = |x + 2|$$

A.

The graph of y = m|x - h| + k has the following characteristics.

- The graph has vertex (h, k) and is symmetric in the line x = h.
- The graph is V-shaped. It opens up if m> 0 and down if m< 0.
- The graph is wider than the graph of y = |x| if |m| < 1. The graph is narrower than the graph of y = |x| if |m| > 1.

To graph:

- 1. plot the vertex (h,k)
- 2. use m to find the points from your vertex on the right hand side of the line
- 3. then the points of the left hand side would be the reflection of the right.
- * Go back to the previous page and look and the try problems and see that it works for them. What is the vertex and the slope?

Ex2a)
$$y = |x+3| + 2$$
.

What is the vertex?

What is the slope?

Ex2b)
$$y = 2|x-4| + 3$$

What is the vertex?

What is the slope?

Ex2c)
$$y = -2|x+9| + 3$$

What is the vertex?

What is the slope?

Ex2d)
$$y = \frac{1}{3}|x-3| + 4$$

What is the vertex?

What is the slope?

Try:
$$y = |x + 5|$$
 vertex: slope:

$$y = \frac{1}{2} |x|$$

$$y = -2|x+9| + 3$$

