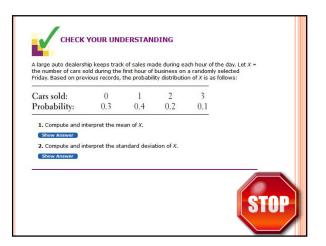
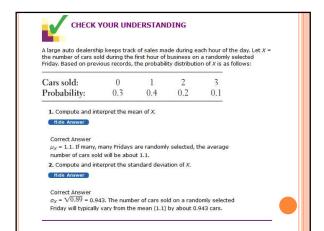
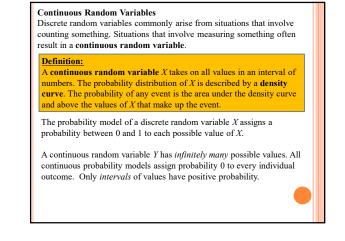

b) Make a histogram of the probability distribution. Describe what you see.	
The left-skewed shape of the distribution suggests a randomly selected newborn will have an Apgar score at the high end of the scale. There is a small chance of getting a baby with a score of 5 or lower.	AS AS AS AS AS AS AS AS AS AS







In many cases, discrete random variables arise from counting something—for instance, the number of siblings that a randomly selected student has. Continuous random variables often arise from measuring something—for instance, height, SAT score, or blood pressure of a randomly selected student.

with mean $\mu = 64$ inches and standard deviation $\sigma = 2.7$ inches. This is a distribution for a large set of data. Now choose one young woman at random. Call her height Y. If we repeat the random choice very many times, the distribution of values of Y is the same Normal distribution that describes the heights of all young women. Define Y as the height of a randomly chosen young woman. Y is a continuous random variable whose probability distribution is N(64, 2.7). What is the probability that a randomly chosen young woman has height between 68 and 70 inches? $P(68 \le Y \le 70) = ???$ $z = \frac{70 - 64}{2}$ Normal curve μ = 64, σ= 2.7 $z = \frac{68 - 64}{2.7}$ 2.7 Probability = ??? =1.48 = 2.22 $P(1.48 \le z \le 2.22) = P(z \le 2.22) - P(z \le 1.48)$

= 0.9868 - 0.9306

Example 4: The heights of young women closely follow the Normal distribution

 $\frac{67}{100}$ = 0.0562 There is about a 5.6% chance that a randomly chosen young woman has a heigh between 68 and 70 inches.

AP EXAM TIP: When you solve problems involving random variables, start by defining the random variable of interest. For example, let X = the Apgar score of a randomly selected baby or let Y = the height of a randomly selected young woman. Then state the probability you're trying to find in terms of the random variable: $P(68 \le Y \le 70)$ or $P(X \ge 7)$.

Do you remember how to find area under the curve with your graphing calculator?

2nd Vars (DISTR) button Normalcdf(lower limit, upper limit, mean, standard deviation)

Go back to the previous problems and use your calculator

EXAMPLE 5)

The weights of 3 year old females closely follows a normal distribution with a mean of 30.7 pounds and standard deviation of 3.6 pounds.

What is the probability that a randomly selected 3 year old female weighs at least 30 pounds? Draw a picture, show your work, and then check with calculator.

EXAMPLE 6)

A study of 12,000 able-bodied male students at U of I found that their times for the mile run were approximately normal with a mean of 7.11 minutes and standard deviation of .74 minutes.

Find the probability $P(5.5 \le M \le 6 \text{ or } 8.5 \le M \le 9$.