

Probability Rules

Probability Models
In Section 5.1, we used simulation to imitate chance behavior. Fortunately, we don't have to
always rely on simulations to determine the probability of a particular outcome.

Descriptions of chance behavior contain two parts:

Definition: The **sample space** *S* of a chance process is the set of all possible outcomes.

A **probability model** is a description of some chance process that consists of two parts: a sample space S and a probability for each outcome.

Basic Rules of Probability All probability models must obey the following rules:

trials in the long run.

*The probability of any event is a number between 0 and 1. The probability of an event is the long-run proportion of repetitions on which that event occurs. Any proportion is a number between 0 and 1, so any probability is also a number between 0 and 1. An event with probability 0 never occurs, and an event with probability 1 occurs on every trial. An event with probability 0.5 occurs in half the

*All possible outcomes together must have probabilities whose sum is 1. Because some outcome must occur on every trial, the sum of the probabilities for all possible outcomes must be exactly 1.

*If all outcomes in the sample space are equally likely, the probability that event A occurs can be found using the formula

 $P(A) = \frac{\text{number of outcomes corresponding to event } A}{\text{total number of outcomes in sample space}}$

Example 3: Randomly select a student who took the 2013 AP® Statistics exam and record the student's score. Here is the probability model:						
Score:	1	2	3	4	5	
Probability:	0.235	0.188	0.249	0.202	0.126	
 a) Show that this is a legitimate probability model. Each probability is between 0 and 1 and 0.235 + 0.188 + 0.249 + 0.202 + 0.126 = 1 b) Find the probability that the chosen student scored 3 or better. There are two ways to find this probability: 						
By the additi	ion rule, <i>P</i>	(3 or better)	= 0.249 + 0	.202 + 0.126	= 0.577.	

By the complement rule and addition rule, P(3 or better) = 1 - P(2 or less) = 1 - (0.235 + 0.188) = 1 - 0.423 = 0.577

wo-Way Tables and Probability /hen finding probabilities involving two events, a two-way table can display the imple space in a way that makes probability calculations easier.						
Example 4 is for young gender and The two-wa	: Studer g adults whethe ay table	nts in a c to have r the stud below d	ollege sta their ears dent had isplays th	atistics class wanted to find out how common it pierced. They recorded data on two variables— a pierced ear—for all 178 people in the class. re data.		
	Pierced Ears? Suppose we choose a student from the					
Gender	Yes	No	Total	class at random. Find the probability that		
Male	19	71	90	the student		
Female	84	4	88			
Total	103	75	178	a) has pierced ears.		
Define eve	ents A: is	s male ar	nd <i>B</i> : has			

Each student is equally likely to be chosen. 103 students have pierced ears. So, P(pierced ears) = P(B) = 103/178.

P(A or B) = (19 + 71 + 84)/178. So, P(A or B) = 174/178

ar piercing: electing a s : has pierce	s for a la tudent in ed ears.	rge grou 1 the clas Here is	ap of col ss at ran the two-	Ilege students. The chance process came from dom. Our events of interest were A: is male and way table that summarizes the sample space:			
	Pierced Ears?						
Gender	Yes	No	Total				
Male	19	71	90	71 (19) 84			
Female	84	4	88				
Total	103	75	178				
Define events <i>A</i> : is male and <i>B</i> : has pierced ears.							

Example 5: In the preceding example, we looked at data from a survey on gender and

Region in Venn diagram	In words	In symbols	Count
In the intersection of two circles	Male and pierced ears	$A \cap B$	19
Inside circle A, outside circle B	Male and no pierced ears	$A\cap B^c$	71
Inside circle B, outside circle A	Female and pierced ears	$A^{C} \cap B$	84
Outside both circles	Female and no pierced ears	$A^{C} \cap B^{C}$	4

 Cell phone
 Total

 Landline
 0.51
 0.09
 0.560

 No landline
 0.38
 0.02
 0.40

 Total
 0.89
 0.11
 1.00

AP EXAM TIP: Many probability problems involve simple computations that you can do on your calculator. It may be tempting to just write down your final answer without showing the supporting work. Don't do it! A "naked answer," even if it's correct, will usually earn you no credit on a free-response question.