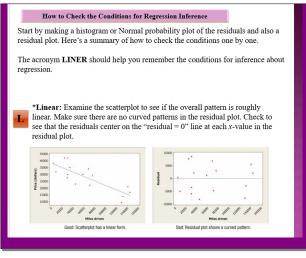
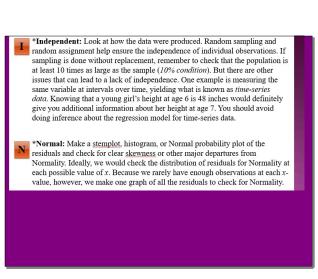
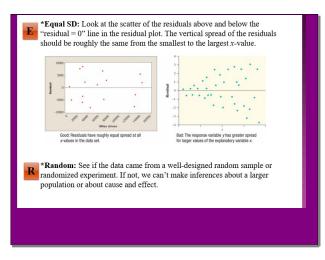

ch 12.1.notebook


March 08, 2017

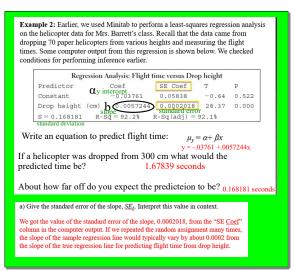


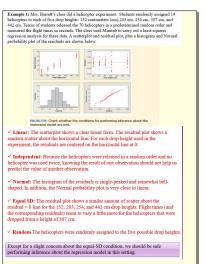
Sampling Distribution of a Slope Choose an SRS of n observations (x, y) from a population of size N with least-Suppose we have n observations on an explanatory variable x and a response squares regression line variable y. Our goal is to study or predict the behavior of y for given values of x. predicted $y = \alpha + \beta_{r}$ Linear: The actual relationship between x and y is linear. For any fixed value of x, the mean response μ_y falls on the population (true) regression line $\mu_y = \alpha + \beta x$. Let b be the slope of the sample regression line. Then: Independent: Individual observations are independent of each other. When sampling without replacement, check the 10% condition. The **mean** of the sampling distribution of b is $\underline{\mu}_b = \beta$. The standard deviation of the sampling distribution of b is $\sigma_b = \frac{\sigma}{\sigma_v \sqrt{n}}$ as long as the 10% condition is satisfied $n \le 0.10N$ Normal: For any fixed value of x, the response y varies according to a Normal the 10% condition is satisfied: $n \le 0.10N$. distribution The sampling distribution of b will be **approximately Normal** if the values of the response variable y follow a Normal distribution for each value of the explanatory Equal SD: The standard deviation of y (call it σ) is the same for all values of x. variable x (the Normal condition). Random: The data come from a well-designed random sample or randomized experiment. Feb 28-7:27 PM Feb 28-7:30 PM

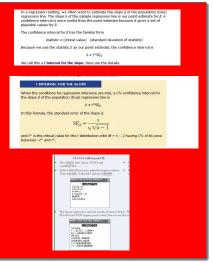

Feb 28-7:30 PM

Feb 28-7:31 PM

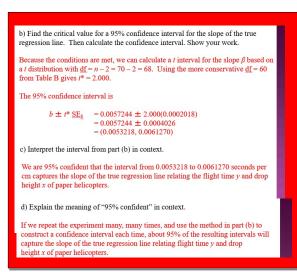
ch 12.1.notebook


March 08, 2017

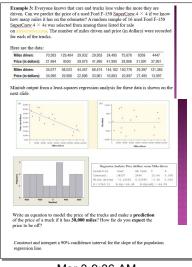


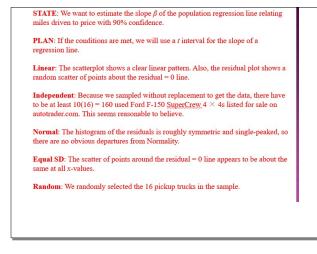

You will always see some irregularity when you look for Normality and equal standard deviation in the residuals, especially when you have few observations. Don't overreact to minor issues in the graphs when checking these two conditions.
Estimating the Parameters When the conditions are met, we can do inference about the regression model $\mu_j - \alpha + \beta x$. The first step is to estimate the unknown parameters.
least-squares regression line, $\hat{y} = a + bx$ $\mu_y = a + \beta x$
y-intercept a the slope b
estimator of the population y-intercept α . population slope β ,
standard deviation σ variability of the response y about the population regression line.
residuals estimate how much y varies about the population (true) line.
standard deviation of the residuals
$s = \sqrt{\frac{\sum \operatorname{residuals}^2}{n-2}} = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}}$

Mar 3-9:19 AM

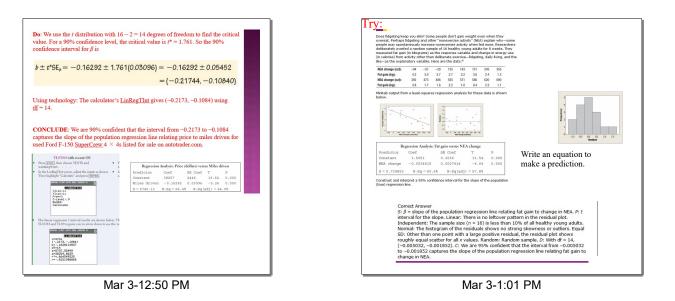


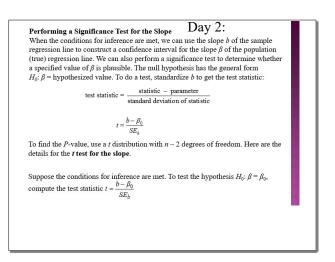
Mar 1-12:22 PM

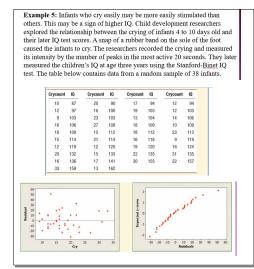

Mar 3-9:27 AM

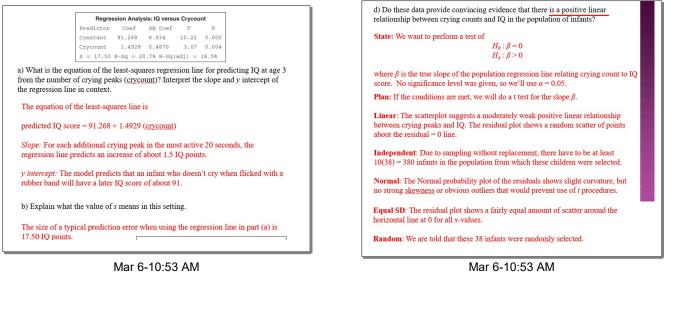

Mar 3-9:35 AM

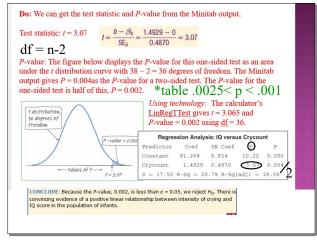
March 08, 2017

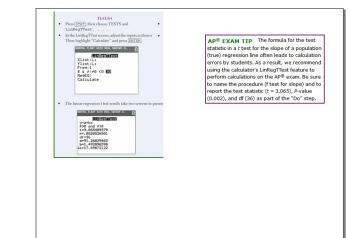

ch 12.1.notebook




Mar 3-9:36 AM




Mar 3-1:12 PM


Mar 6-10:50 AM

ch 12.1.notebook

March 08, 2017

Mar 6-10:54 AM

	ise activity (NEA) a egression analysis f		again, is the I	Minitab output from
Re	gression Analysis: I	at gain versus NE	A change	
Predictor	Coef	SE Coef	т	P
Constant	3.5051	0.3036	11.54	0.000
NEA change	-0.0034415	0.0007414	-4.64	0.000
S = 0.739853	R-Sa = 60.6	R-Sg(adi	= 57.8	
	lationship between ults? Assume that t us H_n : $\beta < 0$, where	he conditions for r β is the slope of th	egression inf	erence are met.

Mar 6-10:56 AM