1. The functions $f(x) = 2 - x^2$ and g(x) = -x are given.

		
a.	Find the area of the region bounded by the graphs	
	of $f(x)$ and $g(x)$.	+2: integrand
	2	+1: limits & answer
	$\int (2-x^2)-(-x) dx =$	
	-1	
	$\int_{0}^{2} \left(2^{-n} + \frac{1}{2} + \frac{1}{2}\right) dx = 0$	
	$\int_{-1}^{2} \left[(2 - x^{2}) - (-x) \right] dx =$ $\int_{-1}^{2} (2 - x^{2} + x) dx =$	
	$2x - \frac{x^3}{3} + \frac{x^2}{2} \Big ^2 = \frac{9}{2}$	
	3 2 2	
b.	Find the area of the region bounded by the graph	
	of $f(x)$ and the x-axis.	+2: integral
	$\sqrt{2}$ $3\sqrt{2}$	+1: answer
	$\int_{-\sqrt{2}}^{\sqrt{2}} (2 - x^2) dx = 2x - \frac{x^3}{3} \Big _{-\sqrt{2}}^{\sqrt{2}}$	
	$-\sqrt{2}$ 3 $ _{-\sqrt{2}}$	
	$=4\sqrt{2}$	
	$=4\sqrt{2}-\frac{4\sqrt{2}}{3}$	
c.	Find the area of the region bounded by the graph	
), the x-axis and the line $x = 2$.	+2 integral
or g(x	j , the λ -axis and the line $\lambda = 2$.	1.2 integral
	2	+1: answer
	$\int_{0}^{\infty} \left[0 - (-x)\right] dx = 2$, 1. answer
	$\int_{0}^{\infty} (x) \mu x = 2$	
		1

3.
$$F(y) = \int_{-1}^{y} 3e^{x/2} dx$$

a. Find the accumulation function F .	+2: antiderivative
$\int_{-1}^{y} 3e^{\frac{y}{2}} dx = 6e^{\frac{x}{2}} \Big _{-1}^{y}$	+1: answer
$=6e^{\frac{y}{2}}-6e^{-\frac{1}{2}}$	
b. Evaluate $F(-1)$, $F(0)$, and $F(4)$.	
F(-1) = 0	+1 for 0
$F(0) = 6 - 6e^{-\frac{1}{2}}$	$+1 \text{ for } 6-6e^{-\frac{1}{2}}$
$F(4) = 6e^2 - 6e^{-1/2}$	$+1 \text{ for } 6e^2 - 6e^{-\frac{1}{2}}$
c. Graphically show the area given by the value $F(0)$.	+2: graph of $3e^{x/2}$
5.0	+1: shaded area
3	
-2 -1	

6. Consider the region bounded by $y = x^3$, y = 8, and x = 0.

a. Find the volume of the solid formed by rotating the region about the <i>y</i> -axis	+2: integrand
$\pi \int_{3}^{8} (\sqrt[3]{y})^2 dy =$	+1: limits, constant, answer
$\left. \pi \left(\frac{3}{5} y^{5/3} \right) \right _{0}^{8} = \frac{96}{5} \pi \approx 60.319$	
b. Find the volume of the solid formed by rotating the region about the <i>x</i> -axis.	+2: integrand
$\pi \int_{0}^{2} \left(8^{2} - \left(x^{3}\right)^{2}\right) dx =$	+1: limits, constant, answer

$$\pi \left[64x - \frac{x^7}{7} \right]_0^2 = \frac{768}{7} \pi \approx 344.678$$
c. Find the volume of the solid formed by rotating the region about the line $x = 2$.

 $\pi \int_{0}^{2} \left(64 - x^{6}\right) dx =$

$$\pi \int_{0}^{8} \left(2^{2} - \left(2 - \sqrt[3]{y}\right)^{2}\right) dy =$$

$$\pi \int_{0}^{8} \left(4y^{\frac{1}{3}} - y^{\frac{2}{3}}\right) dy =$$

$$\pi \left[3y^{\frac{4}{3}} - \frac{3}{5}y^{\frac{5}{3}}\right]_{0}^{8} =$$

$$\pi \left[3(16) - \frac{3}{5}(32)\right] = \frac{144}{5}\pi \approx 90.478$$

+1: limits, constant, answer

7. Do the following:

a. Find the distance between the points (1, 2) and (7, 10) using integration.	+2: integral
$\int_{1}^{7} \sqrt{1 + \left(\frac{4}{3}\right)^2} dx =$	+1: answer
$\int_{1}^{7} \frac{5}{3} dx = \frac{5}{3} x \bigg _{1}^{7} = 10$	
b. Find the length of the curve $y = 1 + 6x^{1/2}$ on the interval [0, 1].	+2: integral
$\int_{0}^{1} \sqrt{1 + \left(9x^{\frac{1}{2}}\right)^{2}} dx = \int_{0}^{1} \sqrt{1 + 81x} dx =$	+1: answer
$\frac{1}{81} \left(\frac{2(1+81x)^{\frac{3}{2}}}{3} \right) \Big _{0}^{1} = \frac{2}{243} \left(82^{\frac{3}{2}} - 1 \right)$	
c. Find the length of the curve $y = \frac{x^3}{6} + \frac{1}{2x}, \frac{1}{2} \le x \le 1$	+2: integral
	+1: answer
$\int_{\frac{1}{2}}^{1} \sqrt{1 + \left(\frac{x^2}{2} - \frac{1}{2x^2}\right)^2} dx =$	
$\int_{\frac{1}{2}}^{1} \sqrt{\frac{x^4}{4} + \frac{1}{2} + \frac{1}{4x^4}} \ dx = \int_{\frac{1}{2}}^{1} \sqrt{\left(\frac{x^2}{2} + \frac{1}{2x^2}\right)^2} \ dx = .$	
$\left(\frac{x^3}{6} - \frac{1}{2x}\right)_{\frac{1}{2}}^{1} = \frac{31}{48}$	

9. Let **R** be the region bounded by the graph of $y = x^2 - 1$ and the graph of $x = y^2$.

$$x^2 - 1 = \pm \sqrt{x}$$
 when $x = 0.52489$ and 1.49022. Let $A = 0.52489$ and $B = 1.49022$.
Let $S = -\sqrt{A} = -0.72449$ and $T = \sqrt{1.49022} = 1.22074$

a.	Find the area of R .	
	Area = $\int_{S}^{T} (\sqrt{y+1} - y^2) dy = 1.377$	+1: integrand +1: limits +1: answer
b.	Find the volume of the solid generated when \mathbf{R} is	
rotated about the vertical line $x = 2$.		
		+2: integrand
	$V = \pi \int_{S}^{T} \left((2 - y^{2})^{2} - (2 - \sqrt{y+1})^{2} \right) dy = 11.501$	+1: limits, constant, answer
c.	Write, but do not evaluate, an integral expression	
that c	can be used to find the volume of the solid generated	
when R is rotated about the line $y = -1$.		+2: integrand
V =		+1: limits & constant
$\pi \int_{0}^{A} \left(\left(\right) \right) dt$	$(\sqrt{x}+1)^2 - (-\sqrt{x}+1)^2 dx + \pi \int_{a}^{B} ((\sqrt{x}+1)^2 - (x^2)^2) dx$	