Math 116 10.1 – 10.3 Review Worksheet

- · · · · · · · · · · · · · · · · · · ·	١.	What is the	fifth term	of the sec	quence defined	by a	$a_n = 3n - 1$?
---	----	-------------	------------	------------	----------------	------	----------------	---

- A) 2
- B) 8
- D) 20
- E) 26

2. What type of sequence is described by the rule
$$a_n = 3n - 1$$
? and the metical

- d=5 3. What is the next term in the sequence $1, 6, 11, 16, 21, \dots$?
 - A) 23
- (B)) 26
- C) 28
- E) 32

- A) 2,4,8,14,22,...
- B) 1,5,6,10,11,... C) 3,9,21,39,63,...
- D) -3.0.6.15.27... (E) 3.8.13.18.23... d = 5

5. What is a rule for the nth term of the arithmetic sequence with
$$a_{10} = 22$$
 and a common $a_{10} = a_1 + (10 - 1)$ difference $d = 3$?

- A) $a_n = 3n 2$
- $(B) a_n = 3n 8$
- C) $a_n = 3n + 4$
- $-5 = a_1$ $a_n = -5 + (n-1)3$ an= 3n-8

- D) $a_n = 3n 6$ E) $a_n = 3n + 5$

6. Which series is represented by
$$\sum_{n=0}^{9} (5n+3)$$
? $a_0 = 5(0)+3$ $a_0 = 5(0)+3$ $a_0 = 3$ $a_0 = 48$

- A) 8+13+18+...
- B) 8+13+18+...+48 C) 8+13+18+...+53

E)
$$3+8+13+...$$

7. What is the partial sum of
$$\sum_{n=0}^{9} (5n+3)^{n}$$

7. What is the partial sum of
$$\sum_{n=0}^{9} (5n+3)$$
? $S_{10} = \frac{10}{2} (3+48) = \boxed{255}$

8. What is the partial sum of the series
$$-1+3+7+...+(4n-5)$$

$$S_{n} = \frac{n}{2} \left(-1 + 4n + 5 \right)$$

$$= \left(\frac{n}{2} \right) \left(4n - 6 \right)$$

$$\left[2n^{2} - 3n \right]$$

- 9. Which of the following is an geometric sequence?
 - (A) 1, 2, 4, 8, 16, ... C2 B) -3,1,5,9,...
- C) 4, 8, 24, 96, 480,...

- D) -5,0,10,25,30,...
- E) -2, -4, 8, 16, -32, ...
- 10. What is a rule for the n^{th} term of the geometric sequence $-3, -6, -12, -24, -48, \dots$?

$$a_n = (-3)(2)^{n-1}$$

- A) $a_n = 2(-3)^{n-1}$
- (B) $a_n = -3(2)^{n-1}$
- C) $a_n = 3(-2)^{n-1}$

- D) $a_n = -3(-2)^{n-1}$
- E) $a_n = -2(3)^{n-1}$
- 11. What is the partial sum of the series 2+6+18+...+39,366? $\alpha_{\eta} = 2(3)^{\eta-1}$

$$S = \frac{2(1-3^{\circ})}{1-3} = \frac{59,048}{5}$$

9, 483 = 3
on:
$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots + \frac{9}{10}$$

$$\begin{bmatrix} 9 & n \\ n=1 & n+1 \end{bmatrix}$$

- $a_{n} = 2(3)^{n}$ $39,344 = 2(3)^{n-1}$ 19,483 = 39
 12. Write the following series in Sigma Notation: $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots + \frac{9}{10}$
- 13. Which type of sequence (arithmetic or geometric) is similar to a linear function? Why? Common différence same as slope

Solve the following sums.

14.
$$\sum_{n=0}^{5} 7 \qquad \boxed{42}$$

15.
$$\sum_{n=1}^{5} 7n-3$$
 $\frac{5}{2}(4+32)$ 16. $\sum_{n=1}^{15} \left(\frac{7}{2}\right)^n$ $\frac{7}{2}\left(1-\frac{7}{2}\right)^n$ $\frac{7}{1-\frac{1}{2}}$ $\frac{7}{1-\frac{1}{2}}$

16.
$$\sum_{n=1}^{15} \left(\frac{7}{2}\right)^n \qquad \frac{7}{2} \left(1 - \frac{7}{2}\right)^n$$

17.
$$\sum_{n=1}^{\infty} \left(\frac{9}{10}\right)^{n} \quad S = \frac{9/0}{1 - 9/0}$$

18.
$$\sum_{n=1}^{100} \left(6 - \frac{1}{2}n\right) \left[-\frac{1925}{2}\right]$$

17.
$$\sum_{n=1}^{\infty} \left(\frac{9}{10}\right)^{n} \quad S = \frac{\frac{9}{1-\frac{9}{10}}}{1-\frac{9}{10}}$$
18.
$$\sum_{n=1}^{100} \left(6 - \frac{1}{2}n\right) \left[-\frac{1925}{1}\right]$$
19.
$$\sum_{n=1}^{\infty} 3 \left(\frac{1}{10}\right)^{n} \quad S = \frac{\frac{3}{100}}{1-\frac{9}{100}}$$
Evaluate the factorials

Evaluate the factorials.

21.
$$\frac{8!}{4!4!}$$
 $\frac{\cancel{3}}{\cancel{3} \cdot \cancel{7} \cdot \cancel{6} \cdot \cancel{5} \cdot \cancel{4} \cdot \cancel{5}}$

21.
$$\frac{8!}{4!4!} = \frac{\cancel{2} \cdot 7 \cdot \cancel{6} \cdot 5 \cdot \cancel{4}^{\cancel{1}}}{\cancel{4} \cdot \cancel{3} \cdot \cancel{2} \cdot \cancel{4}^{\cancel{1}}} = 22. \frac{n!}{(n+2)!} = \frac{n!}{(n+2)(n+1)} = \frac{1}{(n+2)(n+1)}$$

