- 1. Given the differential equation: $\frac{dy}{dx} = \frac{x}{y^2}$
- a. Sketch the slope field for the points: $(1,\pm 1), (2,\pm 1), (-1,\pm 1),$ and $(0,\pm 1).$

- +1 slopes of 0 along y-axis
- +1 relative steepness and correct slant of others

b. Find the general solution for the given differential equation.

$$\frac{dy}{dx} = \frac{x}{y^2}$$

$$y^2 dy = x dx$$

$$\int y^2 dy = \int x dx$$

$$\frac{1}{3} y^3 = \frac{1}{2} x^2 + C$$

$$y^3 = \frac{3}{2} x^2 + k$$

$$y = \sqrt[3]{\frac{3}{2} x^2 + k}$$

- +2 correct antiderivatives
- +1 correct use of constant of integration
- +1 correct solution for y

c. Find the solution of this differential equation that satisfies the initial condition y(0) = 2

$$2 = \sqrt[3]{\frac{3(0)^2}{2} + k}$$

$$8 = k$$

$$y = \sqrt[3]{\frac{3x^2}{2} + 8}$$

- +1 correct substitution of point (0, 2)
- +1 correct solution

3. Given the differential equation $y' = \frac{2x}{y}$

a. Use Euler's Method to find the first three approximations of the particular solution passing	+1 for 2.2
through $(1, 2)$. Use a step of $h = 0.2$	+1 for 2.418
	+1 for 2.650
$y_1 = 2 + 0.2 \left(\frac{2(1)}{2}\right) = 2.2$	111012.030
$y_2 = 2.2 + 0.2 \left(\frac{2(1.2)}{2.2}\right) = 2.418$	
$y_3 = 2.418 + 0.2 \left(\frac{2(1.4)}{2.418}\right) = 2.650$	
b. Find the general solution of the differential	
equation.	+1: separates variables
	+2: correct antiderivatives
dy = 2x	+1: constant of integration
$\frac{dy}{dx} = \frac{2x}{y}$	
ydy = 2xdx	
$\int y dy = \int 2x dx$	
$\frac{1}{2}y^2 = x^2 + C$	
$y^2 = 2x^2 + k$	
$y = \pm \sqrt{2x^2 + k}$	
c. Find the particular solution of the differential	
equation that passes through (1, 2).	
	+1: uses initial condition
$2 = \sqrt{2(1)^2 + k}$	+1: solves for y
4 = 2 + k	
k = 2	
$y = \sqrt{2x^2 + 2}$	

5. The number of bacteria in a culture is increasing according to the law of exponential growth. There are 150 bacteria in the culture after 3 hours and 400 bacteria after 5 hours.

a. Write an exponential growth model for the bacteria population.	+1 correct value for <i>k</i> +1 correct value for <i>C</i>
$150 = Ce^{3k}; 400 = Ce^{5k}$	+1 exponential equation for
<i>Therefore</i> , $400 = 150e^{-3k} \cdot e^{5k}$	У
$\frac{8}{3} = e^{2k}$	
$ \ln\frac{8}{3} = 2k $	
k = .4904	
$150 = Ce^{.4904(3)}$	
<i>So</i> , <i>C</i> = 34.447	
$y = 34.447e^{0.4904t}$	
,	
b. Identify the initial population and the continuous growth rate.	+1 initial population 34.447 +1 growth rate 49.04%
The initial population is approximately 34.447 and the continuous growth rate is 49.04%.	
c. Use logarithms to determine after how many hours the bacteria count will be approximately 15,000?	+ 1 set y = 15,000 +2 correct use of logs
$15000 = 34.447e^{.4904t}$	+1 correct answer
$435.452 = e^{.4904t}$	
$ \ln 435.452 = .4904t $	
$t \approx 12.391 \ hours$	